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Abstract
A complete investigation of hidden symmetries present in the d-dimensional
fluid dynamical model will be carried out. This will be done in the context
of Wess–Zumino (WZ) extension of phase space by using the symplectic
embedding formalism. As a consequence, a set of dynamically equivalent
symmetries existent in fluid field theory will be discovered. Further, an
interesting relation between the WZ symmetries with hidden symmetries
(Bazeia D and Jackiw R 1998 Ann. Phys., NY 270 246 (Preprint hep-th/

9803165); Jackiw R 2000 Preprint physics/0010042) will be performed.
Indeed, the global status of the symmetries will be lifted to a local one.

PACS numbers: 11.10.Ef, 11.10.Lm, 11.30.Cp

1. Introduction

After Bordemann and Hoppe’s work [2], the study of scalar fluid field theory has attracted
much attention [1, 3–7] over the last few years. In [2], the authors demonstrated that relativistic
theories of membranes are integrable systems by reducing the problem to a two-dimensional
(2D) fluid dynamics, where the potential term is proportional to the inverse of mass density
(V ∝ 1/ρ). This subject is of wider interest since it also offers connections with the parton
model [3], hydrodynamical description of quantum mechanics [8, 9], black-hole cosmology
[10] and hydrodynamics of superfluid systems [11]. Most of these investigations are dedicated
to finding the solutions of this Galileo invariant system in d-dimensions in connection with
the solutions of the relativistic d-brane system in (d + 1)-dimensions [1, 4], which is of direct
interest to theoretical particle physics.

Some years ago, Jackiw and Bazeia [1] demonstrated that the d-dimensional fluid theory
with a specific interaction potential (V = g/ρ) presents hidden symmetries: time rescaling
and Galileo antiboost invariance. More recently, the presence of the WZ symmetries in fluid
theory was investigated as well [12]. Further, in another work, one of us examined the
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gauge symmetry in the original phase space scenario [13], where WZ fields were not used.
However, in both works [12, 13], gauge symmetries were investigated considering a generic
interaction potential. Consequently, the global symmetries could not be lifted to local in
[12, 13]. In order to fill the lack in this field, we propose in this paper to carry out a complete
investigation of the hidden gauge symmetries existent in the fluid dynamics model, with a
specific potential term, by using the symplectic embedding formalism [14].

In order for this work to be self-sufficient, it is organized as follows: In section 2, we
present a brief review of the symplectic embedding formalism. In section 3, we present a brief
review of the fluid dynamics [15]. In section 4, the scalar fluid theory will be analysed from
the symplectic point of view [16]. Here, the Dirac brackets among the fields will be computed.
In section 5, the symplectic embedding formalism will be used and, as a consequence, gauge-
invariant versions of the fluid dynamics model will be obtained. It is important to note that more
than one WZ symmetry will be unveiled, showing that this model does not have a unique WZ
gauge-invariant description [12], but a family of dynamically equivalent WZ gauge-invariant
representations. This will allow an interesting discussion concerning both obvious symmetry
(phase symmetry) and hidden symmetry (Galileo antiboost invariance) of the model. Further,
the additional symmetries found in [1] (time rescaling and Galileo antiboost invariance) will be
investigated from the symplectic embedding point of view. Indeed, the global status of these
symmetries will be lifted to local. In the last section, we present our concluding observations
and final comments.

2. General formalism

In this section, we briefly review the symplectic embedding technique that restores the gauge
symmetry. This technique follows Faddeev–Shatashivilli’s suggestion [17] and is set up on a
contemporary framework to handle constrained models, the symplectic formalism [16].

In order to systemize the symplectic embedding formalism, we consider a general
noninvariant mechanical model whose dynamics is governed by a Lagrangian L(ai, ȧi , t),
(with i = 1, 2, . . . , N), where ai and ȧi are the space and velocity variables, respectively.
Note that this model does not result in the loss of generality or physical content. Following
the symplectic method the zeroth-iterative first-order Lagrangian one-form is written as

L(0) dt = A
(0)
θ dξ (0)θ − V (0)(ξ) dt. (1)

The symplectic variables are

ξ (0)θ =
{

ai with θ = 1, 2, . . . , N

pi with θ = N + 1, N + 2, . . . , 2N
(2)

and A
(0)
θ are the canonical momenta and V (0) is the symplectic potential. From the Euler–

Lagrange equations of motion, the symplectic tensor is obtained as

f
(0)
θβ = ∂A

(0)
β

∂ξ (0)θ
− ∂A

(0)
θ

∂ξ (0)β
. (3)

When the two-form f ≡ 1
2fθβ dξ θ ∧ dξβ is singular, the symplectic matrix (3) has a zero

mode (ν(0)) that generates a new constraint when contracted with the gradient of the symplectic
potential

�(0) = ν(0)θ ∂V (0)

∂ξ (0)θ
. (4)
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This constraint is introduced into the zeroth-iterative Lagrangian one-form equation (1) through
a Lagrange multiplier η, generating the next one

L(1) dt = A
(0)
θ dξ (0)θ + dη�(0) − V (0)(ξ) dt

= A(1)
γ dξ (1)γ − V (1)(ξ) dt (5)

with γ = 1, 2, . . . , (2N + 1) and

V (1) = V (0)|�(0)=0 ξ (1)γ = (ξ (0)θ , η) A(1)
γ = (

A
(0)
θ , �(0)

)
. (6)

As a consequence, the first-iterative symplectic tensor is computed as

f
(1)
γβ = ∂A

(1)
β

∂ξ (1)γ
− ∂A(1)

γ

∂ξ (1)β
. (7)

If this tensor is nonsingular, the iterative process stops and Dirac’s brackets among the phase
space variables are obtained from the inverse matrix

(
f

(1)
γβ

)−1
and, consequently, the Hamilton

equation of motion can be computed and solved as well, as discussed in [18]. It is well known
that a physical system can be described in terms of a symplectic manifold M, classically at
least. From a physical point of view, M is the phase space of the system while a nondegenerate
closed two-form f can be identified as being the Poisson bracket. The dynamics of the system
is determined just specifying a real-valued function (Hamiltonian) H on phase space, i.e., this
real-valued function solves the Hamilton equation, namely

ι(X)f = dH (8)

and the classical dynamical trajectories of the system in phase space are obtained. It is
important to mention that if f is nondegenerate, equation (8) has a unique solution. The
nondegeneracy of f means that the linear map � : T M → T ∗M defined by �(X) := �(X)f

is an isomorphism; due to this, equation (8) is solved uniquely for any Hamiltonian
(X = �−1(dH)). In contrast, the tensor has a zero mode and a new constraint arises, indicating
that the iterative process goes on until the symplectic matrix becomes nonsingular or singular.
If this matrix is nonsingular, Dirac’s brackets will be determined. In [18], the authors consider
in detail the case when f is degenerate, which usually arises when constraints are presented
on the system. In which case, (M, f ) is called the presymplectic manifold. As a consequence,
the Hamilton equation, equation (8), may or may not possess solutions, or possess nonunique
solutions. In contrast, if this matrix is singular and the respective zero mode does not generate
a new constraint, the system has a symmetry.

After this brief introduction, the symplectic embedding formalism will be systematized.
The main idea of this embedding formalism is to introduce extra fields into the model in order to
obstruct the solutions of the Hamiltonian equations of motion. It begins with the introduction
of two arbitrary functions dependent on the original phase space and WZ variable, namely,
�(ai, pi) and G(ai, pi, η), into the first-order Lagrangian one-form as follows:

L̃(0)
dt = A

(0)
θ dξ (0)θ + � dη − Ṽ

(0)
(ξ) dt (9)

with

Ṽ
(0) = V (0) + G(ai, pi, η) (10)

where the arbitrary function G(ai, pi, η) is expressed as an expansion in terms of the WZ
field, given by

G(ai, pi, η) =
∞∑

n=1

G(n)(ai, pi, η) G(n)(ai, pi, η) ∼ ηn (11)
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and satisfies the following boundary condition

G(ai, pi, η = 0) = 0. (12)

The symplectic variables were extended to also contain the WZ variable ξ̃ (0)θ̃ = (ξ (0)θ , η)

(with θ̃ = 1, 2, . . . , 2N + 1) and the first-iterative symplectic potential becomes

Ṽ
(0)

(ai, pi, η) = V (0)(ai, pi) +
∞∑

n=1

G(n)(ai, pi, η). (13)

In this context, the canonical momenta are

Ã
(0)

θ̃
=

{
A

(0)
θ with θ̃ = 1, 2, . . . , 2N

� with θ̃ = 2N + 1
(14)

and the new symplectic tensor, given by

f̃
(0)

θ̃ β̃
= ∂Ã

(0)

β̃

∂ξ̃ (0)θ̃
− ∂Ã

(0)

θ̃

∂ξ̃ (0)β̃
(15)

that is

f̃
(0)

θ̃ β̃
=

(
f

(0)
θβ f

(0)
θη

f
(0)
ηβ 0

)
. (16)

The implementation of the symplectic embedding scheme follows in two steps. The first
step is addressed at computing �(ai, pi), while the second step is dedicated to the calculation
of G(ai, pi, η). In order to begin with the first step, we impose that this new symplectic tensor
(f̃

(0)
) has a zero-mode ν̃, consequently, we get the following condition:

ν̃(0)θ̃ f̃
(0)

θ̃ β̃
= 0. (17)

Note that, at this point, f becomes degenerate and, in consequence, we introduce an obstruction
to solve, in a unique way, the Hamilton equation of motion given in equation (8). Assuming
that the zero-mode ν̃(0)θ̃ is

ν̃(0) = (µθ 1) (18)

and using the relation given in equation (17) together with equation (16), we get a set of
equations, namely

µθf
(0)
θβ + f

(0)
ηβ = 0 (19)

where

f
(0)
ηβ = ∂A

(0)
β

∂η
− ∂�

∂ξ(0)β
. (20)

Observe that the matrix elements µθ are chosen in order to disclose a desired gauge symmetry.
Note that in this formalism the zero-mode ν̃(0)θ̃ is the gauge symmetry generator. At this
point, it deserves mentioning that this characteristic is important because it opens up the
possibility of disclosing the desired hidden gauge symmetry from the noninvariant model.
It awards some power to the symplectic embedding formalism to deal with noninvariant
systems. From relation (17) some differential equations involving �(ai, pi) are obtained,
equation (19), and after a straightforward computation, �(ai, pi) can be determined.
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In order to compute G(ai, pi, η) in the second step, we impose that no more constraints
arise from the contraction of the zero-mode (ν̃(0)θ̃ ) with the gradient of the potential
Ṽ

(0)
(ai, pi, η). This condition generates a general differential equation, which reads as

ν̃(0)θ̃ ∂Ṽ
(0)

(ai, pi, η)

∂ξ̃
(0)θ̃

= 0

µθ ∂V (0)(ai, pi)

∂ξ (0)θ
+ µθ ∂G(1)(ai, pi, η)

∂ξ (0)θ
+ µθ ∂G(2)(ai, pi, η)

∂ξ (0)θ
+ · · · +

∂G(1)(ai, pi, η)

∂η
(21)

+
∂G(2)(ai, pi, η)

∂η
+ · · · = 0

that allows us to compute all correction terms G(n)(ai, pi, η) in order of η. Note that this
polynomial expansion in terms of η is equal to zero, subsequently, whole coefficients for
each order in η must be null identically. In view of this, each correction term of order η is
determined. For a linear correction term, we have

µθ ∂V (0)(ai, pi)

∂ξ (0)θ
+

∂G(1)(ai, pi, η)

∂η
= 0. (22)

For a quadratic correction term, we get

µθ ∂G(1)(ai, pi, η)

∂ξ (0)θ
+

∂G(2)(ai, pi, η)

∂η
= 0. (23)

From these equations, a recursive equation for n � 2 is proposed as

µθ ∂G(n−1)(ai, pi, η)

∂ξ (0)θ
+

∂G(n)(ai, pi, η)

∂η
= 0 (24)

that allows us to compute the remaining correction terms of order η. This iterative process
is successively repeated until equation (21) becomes identically null, consequently, the extra
term G(ai, pi, η) is obtained explicitly. Then, the gauge-invariant Hamiltonian, identified as
being the symplectic potential, is obtained as

H̃(ai, pi, η) = V (0)(ai, pi) + G(ai, pi, η) (25)

and the zero-mode ν̃(0)θ̃ is identified as being the generator of an infinitesimal gauge
transformation, given by

δξ̃
θ̃ = εν̃(0)θ̃ (26)

where ε is an infinitesimal parameter.

3. The fluid dynamics model

The subject matter considered in this section follows closely that presented in section 2 of [13].
This section begins with the derivation of the Lagrangian that determines the fluid dynamics
of interest here. We start with the (linear or nonlinear) Schrödinger theory Lagrangian defined
in a d-dimensional (r) space evolving in time (t), which reads as

LS =
∫

ddr

{
iψ∗ψ̇ − 1

2
(∇ψ∗) · (∇ψ) − V̄ (ψ∗ψ)

}
(27)

with V̄ determining any nonlinear interaction. Inserting the representation in terms of mass
density (ρ ≡ ρ(t, r)) and velocity potential (θ ≡ θ(t, r)) as in [11], namely,

ψ = ρ1/2 eiθ (28)
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into the Schrödinger Lagrangian, we get the fluid dynamical model [15] described by the
following Lagrangian in d-dimensional (r) space:

L =
∫

ddr
(

θρ̇ − 1

2
ρ∇θ · ∇θ − V (ρ)

)
(29)

with

V (ρ) = V̄ (ρ) +
1

8

(∇ρ)2

ρ
(30)

which is the hydrodynamical form of the Schrödinger theory [8, 9]. At this point, it is important
to note that there is a nontrivial interaction, even in the absence of V̄ . This result can also be
obtained from a gauge-fixed formulation of a membrane in Minkowski space [2], through a
field-dependent change of variables, for the special case d = 2 with the following potential,

V (ρ) = g

ρ
. (31)

The same result was also obtained from a dimensional reduction of a local relativistic field
theory [3]. Afterwards, it is obvious that the fluid model described by the Lagrangian,
equation (29), with some restrictions on V (ρ), presents Galileo symmetry. As quoted by
Bazeia [4], the connection between the fluid model and the membrane and its generalization to
the d-brane system only appears under the very specific density-dependent interaction potential
(V = g/ρ). For completeness, the manifest symmetries and the corresponding generators
will be listed in table 1 (see [1] for details).

Table 1. The symmetries and the corresponding generators for the fluid dynamics model.

Energy H = ∫
dd r E

E = 1
2 ρ∇θ · ∇θ + V (ρ)

Angular momentum P = ∫
dd r P

P = ρ∇θ = j
Galileo boost B = tP − ∫

dd r rρ

M = ∫
dd r ρ

Charge ρω = ρ

θω = θ − ω

Time dilatation D = tH − ∫
dd r ρθ

Galileo antiboost G = ∫
dd r

(
rE − 1

2 ρ∇θ2
)

In [1, 4] it was shown that only under the very specific density-dependent potential, given
in equation (31), does the connection between the Galileo invariant system presented in this
section, defined either in d = 2 or d-space dimensions, and the relativistic membrane and
its generalization to the d-brane system in d = 3 or (d + 1)-space dimensions, appear. In
view of this, it is remarkable to note that the additional symmetries present in the Galileo
invariant system in d � 1 space dimensions with the interacting potential V (ρ) = g/ρ are
also present in the relativistic membrane and its generalization to the d-brane system in d � 2
space dimensions.

4. Symplectic analysis

In this section, the fluid dynamic model will be analysed from the symplectic point of view.
Note that this Lagrangian is already in first-order form, so we can write

L(0) = θρ̇ − V (0) (32)
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where the symplectic potential is

V (0) = 1
2ρ∂iθ∂iθ + V (ρ). (33)

The symplectic fields are ξ (0)β = (ρ, θ) with the corresponding canonical momenta given by
A(0)

ρ = θ and A
(0)
θ = 0.

The zeroth-iterative symplectic matrix, given by

f (0) =
(

0 −δ(d)(r − r′)

δ(d)(r − r′) 0

)
(34)

is a nonsingular matrix and, consequently, the model is not a gauge-invariant field theory. As
settled by the symplectic formalism [16], the Dirac brackets among the phase space fields are
acquired from the inverse of the symplectic matrix, namely

{ρ(r), θ(r′)}∗ = δ(d)(r − r′) {ρ(r), ρ(r′)}∗ = 0 {θ(r), θ(r′)}∗ = 0. (35)

This completes the noninvariant analysis.

5. The WZ gauge model

At this point, the WZ gauge-invariant version of the fluid theory will be obtained using the
symplectic embedding formalism [14]. First, a generic interaction potential will be considered
and, later, the specific potential (V = g/ρ) will be used. In agreement with the symplectic
embedding formalism, two arbitrary functions, � and G, depending on the original phase
space fields and the WZ field (η) must be added into the model. The former is introduced into
the kinetical sector and the latter into the potential sector of the first-order Lagrangian. The
process starts with the computation of � and finishes with the computation of G.

In order to reformulate the model as a gauge-invariant field theory, let us start with the
first-order Lagrangian L(0), equation (32), added with the arbitrary terms (�,G), given by

L̃(0) = θρ̇ + �η̇ − Ṽ
(0)

(36)

with

Ṽ
(0) = 1

2ρ∂iθ∂iθ + V (ρ) + G (37)

where � ≡ �(ρ, θ) and G ≡ G(ρ, θ, η) are arbitrary functions to be determined. Now, the

symplectic fields are ξ̃
(0)β̃ = (ρ, θ, η) while the symplectic matrix is

f̃
(0) =




0 −δ(d)(r − r′) δ�r′
δρ(r)

δ(d)(r − r′) 0 δ�r′
δθ(r)

− δ�r
δρ(r′) − δ�r

δθ(r′) 0


 (38)

where �r ≡ �(ρ(r), θ(r)) and �r′ ≡ �(ρ(r′), θ(r′)).
As established by the symplectic embedding formalism, the corresponding zero-mode

ν̃(0)(r) satisfies the relation given in equation (17), that is now rewritten as∫
ddrν̃(0)θ̃ (r)f̃ θ̃ β̃ (r, r′) = 0 (39)

which produces a set of equations that allows the determination of � explicitly. At this point,
it is very important to note that this embedding formalism reveals the U(1) hidden gauge
symmetry on the physical model because the zero mode does not generate a new constraint.
Indeed, it determines the arbitrary function � and, consequently, awards the gauge invariant
reformulation of the model. After that, the G function will be computed using equation (21).
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A remarkable feature of the symplectic embedding technique is that it opens up the possibility
of implementing a complete investigation of the WZ gauge symmetries existent on the model
just defining the zero mode. In the present case, we could propose eight distinct zero modes in
order to explore, apparently, eight different symmetries. With this strategy, we could propose
eight dynamically equivalent gauge-invariant versions of the fluid dynamical model given by
[12] and we also could lift a global symmetry (phase symmetry) to a local one, indeed, we
could obtain a WZ Lagrangian where this symmetry can be obtained in an easy way. It is
important to note that the WZ symmetry will be revealed using a generic potential, but at the
end of each subsection, we will consider the specific potential (V = g/ρ) in order to guarantee
the connection between d-dimensional fluid theory and relativistic membrane theory.

5.1. The first hidden symmetry

This subsection begins with the WZ gauge symmetry related to the following zero mode:

ν̃(0) = (1 1 −1). (40)

Since this zero mode and the symplectic matrix equation (38) must satisfy the gauge symmetry
condition, given in equation (39), a set of differential equations is obtained, namely∫

ddr
(

δ(d)(r − r′) +
δ�(r)
δρ(r′)

)
= 0∫

ddr
(

−δ(d)(r − r′) +
δ�(r)
δθ(r′)

)
= 0∫

ddr
(

δ�(r)
δρ(r′)

+
δ�(r)
δθ(r′)

)
= 0.

(41)

After an integration process, � is determined as

�(r) = θ(r) − ρ(r). (42)

In view of this, the symplectic matrix becomes

f̃
(0) =


0 −1 −1

1 0 1
1 −1 0


 δ(d)(r − r′) (43)

which is singular by construction. Due to this, the first-order Lagrangian is

L̃(0) = θρ̇ + (θ − ρ)η̇ − Ṽ
(0)

(44)

where Ṽ
(0)

is given in equation (37).
Now, let us begin with the second step in order to reformulate the model as a WZ gauge-

invariant theory. The zero mode ν̃(0) does not produce a constraint when contracted with the
gradient of the symplectic potential, namely∫

ddr′ν̃(0)β̃ (r)
δṼ

(0)
(r′)

δξ̃
β̃
(r)

= 0. (45)

This expression produces a general differential equation, (21), that allows the computation of
whole correction terms of order η enclosed in G(ρ, θ, η), given in equation (11). In order to
compute the first correction term of order η, G(1), we use the relation given in equation (22),
written as

0 =
∫

ddr′
[

1

2
∂ ′
i θ(r′)∂ ′iθ(r′)δ(d)(r′ − r) +

δV (ρ(r′))
δρ(r)

+ ρ(r′)∂ ′
i θ∂ ′iδ(d)(r′ − r) − δG(1)(r′)

δη(r)

]
(46)
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where ∂ ′
i = ∂

∂r′ . After straightforward calculation, the linear correction term of order η is
obtained as

G(1) = 1

2
η∂iθ∂iθ + η

δ

δρ

∫
ddr′V (ρ(r′)) + ρ∂iθ∂iη. (47)

Bringing this result back into the symplectic potential, equation (37), we get

Ṽ
(0) = 1

2
ρ∂iθ∂iθ + V (ρ) +

1

2
η∂iθ∂iθ + η

δ

δρ

∫
ddr′V (ρ(r′)) + ρ∂iθ∂iη. (48)

However, the invariant formulation of the model was not yet obtained because the contraction
of the zero mode, equation (40), with the gradient of the symplectic potential above does
not generate a null value. Due to this, higher order correction terms of order η must be
computed. For the quadratic term, the expression given in equation (23) will be required,
which is rewritten as∫

ddr′
[
η(r′)

δ2V (ρ(r′))
δρ2(r)

+ ∂ ′
i θ(r′)∂ ′iη(r′)δ(d)(r′ − r) + η(r′)∂ ′

i θ(r′)∂ ′iδ(d)(r′ − r)

+ ρ(r′)∂ ′iη(r′)∂ ′
i δ

(d)(r′ − r) − δG(2)(r′)
δη(r)

]
= 0. (49)

After a direct calculation, G(2) is obtained as being

G(2) = 1

2
η2 δ2

δρ2

∫
ddr′V (ρ(r′)) + η∂iθ∂iη +

1

2
ρ∂iη∂iη. (50)

As the second-order correction term is expressed in terms of the potential field (ρ, θ), the
contraction of the zero mode with the gradient of the symplectic potential (added with the
first- and second-order correction terms) still generates a new constraint, consequently, the next
correction term must be computed in order to reveal the symmetry. The third-order correction
term (G(3)) is obtained through the following relation:∫

ddr′
[

1

2
η2(r′)

δ3V (ρ(r′))
δρ3(r)

+
1

2
∂ ′iη(r′)∂ ′

iη(r′)δ(d)(r′ − r)

+ η(r′)∂ ′
iη(r′)∂ ′iδ(d)(r′ − r) − δG(3)(r′)

δη(r)

]
= 0 (51)

which leads to the following result for G(3)

G(3) = 1

6
η3 δ3

δρ3

∫
ddr′V (ρ(r′)) +

1

2
η∂iη∂iη. (52)

As the contraction of the zero mode, equation (40), with the gradient of the symplectic potential
(added with the first-, second- and third-order correction terms) does not generate a null value,
the gauge-invariant formulation of the model was not yet achieved. Due to this, higher order
correction terms in η must be computed. For the fourth-order correction term, the equation
given in equation (24) is used, namely∫

ddr′
[

1

6
η3(r′)

δ4V (ρ(r′))
δρ4(r)

− δG(4)(r′)
δη(r)

]
= 0 (53)

which after a computation gives

G(4) = 1

24
η4 δ4

δρ4

∫
ddr′V (ρ(r′)). (54)
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As G(4) is written in terms of the V (ρ), the gauge-invariant formulation of the model requires
an infinite numbers of WZ terms, which are expressed in a general way for n > 3 as

G(n) = 1

n!
ηn δn

δρn

∫
ddr′V (ρ(r′)). (55)

Hence, the gauge-invariant first-order Lagrangian is written as

L̃ = θρ̇ + (θ − ρ)η̇ − Ṽ
(0)

(56)

where the symplectic potential is

Ṽ
(0) = 1

2
(ρ + η)(∂iθ)2 +

1

2
(ρ + η)(∂iη)2 + (ρ + η)∂iθ∂iη + V (ρ) +

1

n!
ηn δn

δρn

∫
ddr′V (ρ).

(57)

Note that the two last terms on the right-hand side of the equation above can be rewritten as

V (ρ) +
1

n!
ηn δn

δρn

∫
ddr′V (ρ(r′)) = V (ρ) +

1

n!
ηn∂n

ρV (ρ)

=
(

1 +
1

n!
ηn∂n

ρ

)
V (ρ) = eη∂n

ρ V (ρ) = V (ρ + η). (58)

As a consequence, the symplectic potential becomes

Ṽ
(0) = 1

2 (ρ + η)(∂iθ + ∂iη)2 + V (ρ + η). (59)

By construction, the contraction of the zero mode (ν̃(0)) with the gradient of the symplectic
potential above does not produce a new constraint, consequently, a WZ symmetry is disclosed.

To complete the gauge-invariant reformulation of the model, the infinitesimal gauge
transformation will also be computed. In agreement with the symplectic method, the zero
mode ν̃(0) is the generator of the infinitesimal gauge transformations (δO = εν̃(0)). Then,

δρ(r, t) = ε(r, t)δ(d)(r − r′)

δθ(r, t) = ε(r, t)δ(d)(r − r′)

δη(r, t) = −ε(r, t)δ(d)(r − r′)

(60)

where ε(r, t) is an infinitesimal time-dependent parameter. Indeed, under the infinitesimal
transformations above, the invariant Hamiltonian (Ṽ

(0)
) changes as

δṼ
(0) = 0. (61)

Integrating by parts and using the following field transformations

θ → θ − η ρ → ρ − 2η (62)

the Lagrangian density, equation (56), becomes

L̃ = −(ρ − η)θ̇ − 1
2 (ρ − η)(∂iθ)(∂iθ) − V (ρ − η) (63)

which is the same result obtained in [12]. This can also be rewritten as

L̃ = −ρ̃ ˙̃θ − 1
2 (ρ̃∂i θ̃ )(∂i θ̃ ) − V (ρ̃) (64)

where

ρ̃ = ρ − η θ̃ = θ (65)

which sounds like a Stückelberg field-shifting formalism [19]. Assuming the specific potential
V = g/ρ, we get

L̃ = −ρ̃ ˙̃θ − 1

2
(ρ̃∂i θ̃ )(∂i θ̃ ) − g

ρ̃
(66)

and, subsequently, the gauge symmetry aspects, which were lost after the implementation of
the phase space reduction in the relativistic membrane theory, are now recovered.
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5.2. The second hidden symmetry

Now, let us explore a hidden symmetry associated with another zero mode, which is read as

ν̃(0) = ( 1 0 −1 ) . (67)

As the gauge symmetry condition, equation (39), must be satisfied, the following set of
differential equations is obtained:∫

ddr
δ�(r)
δρ(r′)

= 0
∫

ddr
(

−δ(d)(r − r′) +
δ�(r)
δθ(r′)

)
= 0 (68)

which leads to the following result for �:

�(r) = θ(r) (69)

with the corresponding symplectic matrix

f̃
(0) =


0 −1 0

1 0 1
0 −1 0


 δ(d)(r − r′). (70)

This matrix is obviously singular and the first-order Lagrangian becomes

L̃(0) = θρ̇ + θη̇ − Ṽ
(0)

. (71)

The second step of the symplectic embedding formalism begins with the condition which
imposes that the zero mode ν̃(0), now given by equation (67), does not produce a constraint
when contracted with the gradient of the symplectic potential, namely∫

ddr′ν̃(0)β̃ (r)
δṼ

(0)
(r′)

δξ̃
β̃
(r)

= 0. (72)

This relation generates a general differential equation, given in equation (21), that allows the
computation of all correction terms of order η enclosed in G(ρ, θ, η). In order to determine
the linear correction term of order η, G(1), we use the relation given in equation (22), written
as ∫

ddr′
[

1

2
∂ ′
i θ(r′)∂ ′iθ(r′)δ(d)(r′ − r) +

δV (ρ(r′))
δρ(r)

− δG(1)(r′)
δη(r)

]
= 0. (73)

After a calculation, the first correction term of order η is obtained as

G(1) = 1

2
η∂iθ∂iθ + η

δ

δρ

∫
ddr′V (ρ(r′)) (74)

and, consequently, the symplectic potential becomes

Ṽ
(0) = 1

2
ρ∂iθ∂iθ + V (ρ) +

1

2
η∂iθ∂iθ + η

δ

δρ

∫
ddr′V (ρ(r′)). (75)

However, the contraction of the zero mode, equation (67), with the gradient of the symplectic
potential above generates a non-null value. Due to this, higher order correction terms in η are
required. For the quadratic term, the equation given in equation (23) is used, which is written
as ∫

ddr′
[
η(r′)

δ2V (ρ(r′))
δρ2(r)

− δG(2)(r′)
δη(r)

]
= 0. (76)

After a calculation, we get

G(2) = 1

2
η2 δ2

δρ2

∫
ddr′V (ρ(r′)). (77)
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As G(2) is expressed in terms of V (ρ), an infinite number of WZ terms appear, which can be
denoted in a general way for n � 2 by the following relation:

G(n) = 1

n!
ηn δn

δρn

∫
ddr′V (ρ(r′)). (78)

Therefore, the gauge-invariant first-order Lagrangian, after an integration by parts,
becomes

L̃ = −(ρ + η)θ̇ − Ṽ
(0)

(79)

with the symplectic potential

Ṽ
(0) = 1

2
(ρ + η)(∂iθ)2 + V (ρ) +

1

n!
ηn δn

δρn

∫
ddr′V (ρ(r′))

= 1

2
(ρ + η)(∂iθ)2 + V (ρ + η) (80)

where we used the relation (58). By construction, the contraction of the zero-mode (ν̃(0)),
equation (67), with the gradient of the symplectic potential above does not produce a new
constraint, consequently, a new hidden symmetry is unveiled.

The infinitesimal gauge transformations will be obtained as

δρ(r, t) = ε(r′, t)δ(d)(r − r′) δθ(r, t) = 0 δη(r, t) = −ε(r′, t)δ(d)(r − r′) (81)

which leave the Hamiltonian invariant (δṼ
(0) = 0).

Introducing the field transformations, given by

θ → θ ρ → ρ − 2η (82)

into the Lagrangian density, equation (79), this becomes the Lagrangian given in equation (63).
Using the relation given in equation (65) together with the specific potential V = g/ρ, the
gauge symmetry aspect of fluid theory is restored as well, which can be verified in equation (66).

5.3. The third hidden symmetry

The symplectic embedding formalism can identify hidden symmetries in a straightforward
way and this was presented in a pedestrian way to solve the G(n) equations in the last two
subsections. Due to this, the necessary steps to obtain the arbitrary function G will be not
repeated after this point. Indeed, after this point, we just make known the zero mode and the
respective result.

In order to extend the investigation of the hidden symmetries present in the fluid dynamics
model, the following zero mode is considered:

ν̃(0) = (0 1 −1) (83)

which, together with the symplectic matrix, equation (38), and gauge symmetry condition,
equation (39), leads to the following set of differential equations for � obtained as∫

ddr
(

δ(d)(r − r′) +
δ�(r)
δρ(r′)

)
= 0

∫
ddr

δ�(r)
δθ(r′)

= 0 (84)

which gives the following solution for �:

�(r) = −ρ(r). (85)

From equation (21), we compute the corresponding symplectic potential

Ṽ
(0) = 1

2ρ∂iθ∂iθ + V (ρ) + ρ∂iθ∂iη + 1
2ρ∂iη∂iη

= 1
2ρ(∂iθ + ∂iη)2 + V (ρ). (86)
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Therefore, the gauge-invariant first-order Lagrangian becomes

L̃ = (θ + η)ρ̇ − Ṽ
(0)

(87)

and the Hamiltonian, equation (86), is invariant under the following infinitesimal gauge
transformations:

δρ(r, t) = 0 δθ(r, t) = ε(r′, t)δ(d)(r − r′) δη(r, t) = −ε(r′, t)δ(d)(r − r′). (88)

At this stage, it is important to note that with this WZ symmetry it was possible to lift a global
symmetry (phase symmetry) to a local one, showing that there is an invariance under local
translations of the velocity potential, which also preserves the mass conservation (see table 1).

Using the canonical transformations

θ → θ − η ρ → ρ − η (89)

the Lagrangian density, equation (87), changes to equation (63). Using equation (65) with
the specific interaction potential V = g/ρ, the gauge symmetry is restored. One important
remark is that the global phase symmetry is lifted to a local one by using WZ fields.

5.4. The fourth hidden symmetry

Here, the following zero mode is considered,

ν̃(0) = ( 1 −1 −1 ) (90)

which due to the symplectic matrix, equation (38), and the gauge symmetry conditions,
equations (39) and (21), � and the respective symplectic potential are obtained, namely

�(r) = θ(r) + ρ(r)

Ṽ
(0) = 1

2
(ρ + η)(∂iθ)2 +

1

2
(ρ + η)(∂iη)2 − (ρ + η)∂iθ∂iη + V (ρ) +

1

n!
ηn δn

δρn

∫
ddr′V (ρ)

= 1

2
(ρ + η)(∂iθ − ∂iη)2 + V (ρ + η) (91)

where we used equation (58).
Therefore, the gauge-invariant Lagrangian is obtained as

L̃ = θρ̇ + (θ + ρ)η̇ − Ṽ
(0)

(92)

and the Hamiltonian above is invariant under the following infinitesimal transformations:

δρ(r, t) = ε(r′, t)δ(d)(r − r′)

δθ(r, t) = −ε(r′, t)δ(d)(r − r′)

δη(r, t) = −ε(r′, t)δ(d)(r − r′).

(93)

From equation (92) and using the following transformations:

θ → θ + η ρ → ρ − 2η (94)

together with equation (65) and the specific potential, we get the results found in sections 5.1
and 5.3 (see equation (66)).



1940 A C R Mendes et al

5.5. The fifth hidden symmetry

At this point, we consider the symmetry related to the following zero-mode:

ν̃(0) = (−1 1 −1). (95)

This zero mode together with the symplectic matrix, equation (38), must obey the gauge
symmetry conditions, equations (39) and (21). Then, we obtain the following results for �

and the symplectic potential:

�(r) = −θ(r) − ρ(r) Ṽ
(0) = 1

2 (ρ − η)(∂iθ + ∂iη)2 + V (ρ − η). (96)

In view of this, the gauge-invariant first-order Lagrangian is written as

L̃ = θρ̇ − (θ + ρ)η̇ − Ṽ
(0)

(97)

where the infinitesimal gauge transformations, given by

δρ(r, t) = −ε(r′, t)δ(d)(r − r′)

δθ(r, t) = ε(r′, t)δ(d)(r − r′)

δη(r, t) = −ε(r′, t)δ(d)(r − r′)

(98)

leave the Hamiltonian invariant (δṼ
(0) = 0).

Inserting the field transformations

θ → θ − η ρ → ρ (99)

and equation (65) and V = g/ρ into the Lagrangian density, equation (97), we reproduce the
results given in sections 5.1 and 5.3.

5.6. The sixth hidden symmetry

Now, a WZ symmetry connected to the following zero mode:

ν̃(0) = (−1 1 −1) (100)

will be explored. In agreement with the main steps of the symplectic embedding formalism,
displayed by equations (38), (39) and (21), � and the gauge-invariant symplectic potential are
obtained as

�(r) = −θ(r) Ṽ
(0) = 1

2 (ρ − η)(∂iθ)2 + V (ρ − η). (101)

Hence, the gauge-invariant first-order Lagrangian is

L̃ = −(ρ − η)θ̇ − Ṽ
(0)

(ρ − η) (102)

which is the same result obtained in [12], after an integration by parts. Recall that this
Lagrangian can be rewritten as the invariant Lagrangian given in equation (66) by using
equation (65) and V = g/ρ.

The infinitesimal gauge transformations, which leave the Hamiltonian invariant (Ṽ
(0)

),
are

δρ(r, t) = −ε(r′, t)δ(d)(r − r′) δθ(r, t) = 0 δη(r, t) = −ε(r′, t)δ(d)(r − r′).
(103)
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5.7. The seventh hidden symmetry

An alternative WZ symmetry, associated with the following zero mode

ν̃(0) = (0 −1 −1) (104)

will be unveiled. Again, the main steps of the symplectic potential must be used and, as a
consequence, � and the gauge-invariant symplectic potential are determined as

�(r) = ρ(r) Ṽ
(0) = 1

2ρ(∂iθ − ∂iη)2 + V (ρ). (105)

Hence, the gauge-invariant Lagrangian is

L̃ = (θ − η)ρ̇ − Ṽ
(0)

(106)

with the corresponding infinitesimal gauge transformations

δρ(r, t) = 0 δθ(r, t) = −ε(r′, t)δ(d)(r − r′) δη(r, t) = −ε(r′, t)δ(d)(r − r′)
(107)

which leave the Hamiltonian invariant. This WZ symmetry, unless with a negative sign, is the
same as that considered in section 5.3.

Through the following transformations:

θ → θ + η ρ → ρ − η (108)

and equation (65) and V = g/ρ, the Lagrangian density, equation (106), becomes the
Lagrangian given in equation (66). As a consequence, the results of sections 5.1 and 5.3
are obtained.

5.8. The eighth hidden symmetry

In order to accomplish the investigation process of the dynamically hidden symmetries present
in the fluid field theory, the following zero mode is considered:

ν̃(0) = ( −1 −1 −1 ) . (109)

Once more, the main steps of the symplectic embedding formalism will be executed. As a
consequence, we get

�(r) = −θ(r) + ρ(r) Ṽ
(0) = 1

2 (ρ − η)(∂iθ − ∂iη)2 + V (ρ − η) (110)

where the identity given in equation (58) was used. Hence, the gauge-invariant first-order
Lagrangian becomes

L̃ = θρ̇ + (−θ + ρ)η̇ − Ṽ
(0)

(111)

and the infinitesimal gauge transformations, which leave the Hamiltonian invariant, are written
as

δρ(r, t) = −ε(r′, t)δ(d)(r − r′)

δθ(r, t) = −ε(r′, t)δ(d)(r − r′)

δη(r, t) = −ε(r′, t)δ(d)(r − r′)

(112)

Using the field transformations

θ = θ + η ρ = ρ (113)

together with equation (65) and V = g/ρ in equation (111), the results given in sections 5.1
and 5.3 are obtained.
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5.9. Extra symmetries

Now, we propose to shed some light on the question of the origin of the additional symmetries
found in [1]. We argue that the time rescaling invariance presented in [1] and in section 3,
arises due to the gauge-fixing process of the relativistic theory of membrane [2]. In order
to clarify this point, we will use the symplectic embedding formalism. Let us consider the
following zero mode

ν̃(0) = (−ρ θ −1) (114)

which reproduces the same infinitesimal field transformations given in [1]. Following the
prescriptions of the symplectic embedding formalism, we obtain

� = −θρ Ṽ
(0)

(ρ, η) = 1

2
ρ(∂iθ)2 eη − g

ρ
eη (115)

where the specific interaction potential was considered into the process. Note that a new term,
the exponential one, sounds like a Liouville term into the WZ gauge-invariant version of the
fluid model. The WZ-invariant Lagrangian density is

L̃ = θρ̇ − θρη̇ − 1

2
ρ(∂iθ)2 eη +

g

ρ
eη (116)

which is invariant under the following infinitesimal gauge transformation:

δρ = −ερ δθ = εθ δη = −ε (117)

where ε has no space dependence. This embraces the infinitesimal transformation given
in [1].

Now, we consider the following zero mode:

ν̃(0) = ρ∇θ(−1 0 1) (118)

which leads to an amazing interpretation for the Galileo antiboost invariance. This zero mode
reproduces the infinitesimal field transformations given in [1], given by

δρ(t, r) = −ρωi∂
iθ δθ(t, r) = 0 δη(t, r) = ρωi∂

iθ (119)

where ωi is now an infinitesimal parameter. At this point, it is very important to mention
that this zero mode, unless with a negative sign and coefficient, is the same as that used to
investigate the WZ symmetry in section 5.2. Therefore, this WZ gauge-invariant formulation
of the fluid model, whose dynamic is governed by Lagrangian density, given in equation (79),
or Hamiltonian density, given in equation (80), is also invariant under the infinitesimal gauge
transformations given in equation (119). In section 5.2, we also discuss that this Lagrangian
density can be rewritten in an equivalent WZ-invariant Lagrangian description, equation (66),
using some canonical transformation, equation (82), and relations, equation (65), together
with V = g/ρ. This reveals, in a linear fashion, the Galileo antiboost invariance on the WZ
gauge-invariant version of the fluid model.

As shown in this section, the symplectic embedding formalism could pick up the extra
symmetries proposed in [1] in a linear fashion just enlarging the phase space with the
introduction of the WZ fields.

6. Final discussions

We have studied in this paper a complete investigation of the hidden symmetries lying
on the fluid field theory [15], which is a theoretical laboratory to study some classical
aspects of membrane theory, as shown by Bordemann and Hoppe in [2]. In this paper,



Symplectic embedding of a fluid dynamical model 1943

the authors demonstrated that the relativistic theory of membranes are integrable systems by
reducing the problem to a two-dimensional fluid dynamics. Later, some authors [1, 4] have
dedicated themselves to finding the solutions of this Galileo-invariant system in d-dimensions
in connection with the solutions of the relativistic d-brane system in (d + 1)-dimensions, which
showed the presence of a hidden dynamical Poincaré symmetry of this nonrelativistic model
realized by field dependent diffeomorphism.

In [12], the authors show that both Galileo and Poincaré groups are preserved by the
introduction of the WZ fields and that the Galileo and Poincaré groups in the gauged model can
be computed from the generators of the nongauged model by using the relation Õ = e−η∂ρO.
In our study, we re-obtain the gauged fluid model proposed in [12] and seven more gauged
versions of the fluid theory, which are dynamically equivalent. In order to clarify this point,
we demonstrated that each hidden symmetry investigated in section 5 can be reduced to the
symmetry obtained in [12] and section 5.6 through canonical transformations. Further, it was
also shown that these sets of equivalent WZ descriptions can be obtained using the Stückelberg
field-shifting formalism [19]. In this way, we demonstrated that the d-dimensional fluid field
theory has a dynamically equivalent family of WZ gauge-invariant descriptions. As the gauge-
invariant versions of the fluid model obtained in this paper are dynamically equivalent and
since they can be reduced to the gauged model obtained in [12], they also preserve both
Galileo and Poincaré groups. This happens due to the possibility of changing the mass density
field, equation (65). Moreover, note that in sections 5.3 and 5.7, an obvious symmetry (phase
symmetry) could be identified in a direct way. Indeed, the phase symmetry (global symmetry)
had its status lifted to a local one. Besides, it was demonstrated that this symmetry belongs to
a WZ family of dynamically equivalent gauge descriptions of the fluid model. Another point
that is important to mention here is that the WZ gauge symmetry of the d-dimensional fluid
theory, with the specific interaction potential V = g/ρ, restores the symmetry lost after the
phase space reduction process of the relativistic membrane theory.

Further, this work opens up the possibility of verifying extra symmetries [1] in a linear
fashion, which seems easier. It was possible to investigate the WZ symmetry connected
with the time rescaling conservation, as done in section 5.9. Indeed, both Lagrangian and
Hamiltonian, invariant under transformations given in [1], were proposed. Besides, with the
WZ embedding of the fluid model, it was possible to demonstrate that the field transformations,
equation (119), which are associated with a particular family of WZ symmetry, are also the
infinitesimal field transformations produced by the Galileo antiboost generator. Finally, we
conclude that after the restoration of the gauge symmetry, the global features of the extra
symmetries were naturally obtained in a local one.
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